CONDITIONAL EXPECTATIONS IN C*-CROSSED PRODUCTS

BY

SHIGERU ITOH

ABSTRACT. Let (A, G, α) be a C^* -dynamical system. Let B be a C^* -subalgebra of A and P be a conditional expectation of A onto B such that $\alpha_t P = P\alpha_t$ for each $t \in G$. Then it is proved that there exists a conditional expectation of $C^*(G, A, \alpha)$ onto $C^*(G, B, \alpha)$. In particular, if G is amenable and A is unital, then there always exists a conditional expectation of $C^*(G, A, \alpha)$ onto $C^*(G)$. Some related results are also obtained.

1. Introduction. Recently Anantharaman-Delaroche [1], [2] investigated the existence of a conditional expectation of a W^* -crossed product $W^*(G, M, \alpha)$ onto a W^* -crossed product $W^*(G, N, \alpha)$ under appropriate conditions, where N is a von Neumann subalgebra of a von Neumann algebra M.

In this paper corresponding results for C^* -crossed products are studied and analogous results are obtained. In particular, if a C^* -algebra A is unital and G is amenable, then the existence of a conditional expectation of $C^*(G, A, \alpha)$ onto $C^*(G)$ is shown.

2. Projections in C^* -algebras. Let A be a C^* -algebra, and let $M_n(A)$ be the C^* -algebra of $n \times n$ matrices $M = [a_{ij}]$ with entries a_{ij} in A (cf. Paschke [10, Appendix], Takesaki [17, IV. §3]).

LEMMA 2.1 (CF. PASCHKE [10, PROPOSITION 6.1], TAKESAKI [17, LEMMA IV.3.2]). An element $M = [a_{ij}]$ of $M_n(A)$ is positive if and only if $\sum_{i,j} x_i^* a_{ij} x_j > 0$ in A for any $x_1, \ldots, x_n \in A$.

Let B be a C^* -subalgebra of A. A bounded linear map $P: A \to B$ is called a conditional expectation if P has the following properties (cf. Umegaki [19]):

- (i) P is an onto projection of norm one, that is, $P^2 = P$ and ||P|| = 1;
- (ii) P is positive, that is, for any $x \in A$, $P(x^*x) \ge 0$;
- (iii) for any $x \in A$, y, $z \in B$, P(yxz) = yP(x)z;
- (iv) for any $x \in A$, $P(x^*)P(x) \le P(x^*x)$.

If $P: A \to B$ is a conditional expectation, then, by (ii), $P(x^*) = P(x)^*$ for each $x \in A$. Tomiyama [18] proved that if $P: A \to B$ is an onto projection of norm one (that is P satisfies condition (i)), then P becomes a conditional expectation (cf. Takesaki [17, Theorem III.3.4]). In fact, in this case P satisfies conditions (ii) and (iv) above and

(iii)' P(xy) = P(x)y and P(yx) = yP(x) for every $x \in A, y \in B$.

Received by the editors December 3, 1980.

¹⁹⁸⁰ Mathematics Subject Classification. Primary 46L05, 43A20.

Key words and phrases. C*-algebra, crossed product, conditional expectation.

PROPOSITION 2.2. Let $P: A \to B$ be a conditional expectation. Then, for any positive integer n and any $x_1, \ldots, x_n \in A$, the $n \times n$ matrix $M = [P(x_i^*x_j) - P(x_i^*)P(x_j)]$ of $M_n(B)$ is positive.

PROOF. For each $y_1, \ldots, y_n \in B$, $x = \sum_i x_i y_i$ is in A. By condition (iv) we have $P(x^*)P(x) \le P(x^*x)$; hence

$$\sum_{i,j} y_i^* P(x_i^*) P(x_j) y_j \le \sum_{i,j} y_i^* P(x_i^* x_j) y_j.$$

By Lemma 2.1, the matrix $M = [P(x_i^*x_i) - P(x_i^*)P(x_i)]$ is positive in $M_n(B)$.

COROLLARY 2.3 (NAKAMURA, TAKESAKI AND UMEGAKI [9], CF. STØRMER [14, THEOREM 4.1]). Let A, B and P be as above. Then, for each positive integer n and each $x_1, \ldots, x_n \in A$, $M = [P(x_i^*x_j)]$ is a positive element of $M_n(B)$, that is, P is a completely positive map (cf. Takesaki [17, IV. §3]).

3. Projections in C^* -crossed products. Let G be a locally compact group and dt be the left Haar measure on G. Let A^* be the dual space of a C^* -algebra A and $\langle \cdot, \cdot \rangle$ be the duality pairing between A and A^* . Denote by $\operatorname{Aut}(A)$ the *-automorphism group of A. We suppose that $\alpha \colon G \to \operatorname{Aut}(A)$ is a strongly continuous homomorphism. Then (A, G, α) is called a C^* -dynamical system.

Let $L^1(G, A)$ be the set of all (equivalence classes of) A-valued Bochner integrable functions on G with respect to dt. $L^1(G, A)$ is a Banach*-algebra with an approximate identity whose multiplication, involution and norm are respectively defined by

$$(xy)(t) = \int x(s)\alpha_s(y(s^{-1}t)) ds, \qquad (x^*)(t) = \Delta(t)^{-1}\alpha_t(x(t^{-1}))^*,$$
$$||x||_1 = \int ||x(t)|| dt$$

for each $x, y \in L^1(G, A)$ and $t \in G$, where Δ is the modular function of G (Doplicher, Kastler and Robinson [5, §§II, III]; cf. Bratteli and Robinson [3, §2.7.1], Pedersen [11, §7.6]). We denote by $C^*(G, A, \alpha)$ the enveloping C^* -algebra of $L^1(G, A)$ (Doplicher, Kastler and Robinson [5, §IV]; cf. Bratteli and Robinson [3, §2.7.1], Pedersen [11, 7.6.5]). $C^*(G, A, \alpha)$ is called the C^* -crossed product (or the covariance algebra) of (A, G, α) . We also denote by $C^*(G)$ the group C^* -algebra of G (cf. Dixmier [4, 13.9.1], Pedersen [11, 7.1.5]). $C^*(G)$ is nothing but $C^*(G, C, \alpha_0)$, where C is the complex numbers and $\alpha_0: G \to \operatorname{Aut}(C)$ is the unique trivial homomorphism.

Now let P be a conditional expectation of A onto a C^* -subalgebra B of A. Assume that $\alpha_t P = P\alpha_t$ for every $t \in G$. Then for each $t \in G$, $\alpha_t(B) \subset B$, hence α_t may also be considered as a *-automorphism of B.

PROPOSITION 3.1. Let (A, G, α) be a C^* -dynamical system, B be a C^* -subalgebra of A, and P be a conditional expectation of A onto B. Suppose that for any $t \in G$, $\alpha_t P = P\alpha_t$. Then $C^*(G, B, \alpha)$ is a C^* -subalgebra of $C^*(G, A, \alpha)$.

PROOF. If $y \in L^1(G, B)$, then $y \in L^1(G, A)$; thus it is sufficient to show that the norm $||y||_B$ of y in $C^*(G, B, \alpha)$ is equal to the norm $||y||_A$ of y in $C^*(G, A, \alpha)$. The inequality $||y||_A \le ||y||_B$ is clear from the definition. We must prove that $||y||_A \ge ||y||_B$. Let Ψ be a (continuous) positive linear form on $L^1(G, B)$ with $||\Psi|| \le 1$. Then Ψ extends to a positive linear form on $C^*(G, B, \alpha)$ (cf. Dixmier [4, 2.7.5]). We use the same symbol Ψ for the extended linear form. To this Ψ , there corresponds a norm continuous positive definite function $\psi \colon G \to B^*$ by Pedersen [11, 7.6.7, 7.6.8]. Define $\phi \colon G \to A^*$ by $\langle a, \phi(t) \rangle = \langle P(a), \psi(t) \rangle$ ($a \in A, t \in G$). Then ϕ is a norm continuous positive definite function. In fact, for any positive integer n, any $a_1, \ldots, a_n \in A$ and any $t_1, \ldots, t_n \in G$, the $n \times n$ matrix $M = [P(a_i^*a_j)]$ is a positive element in $M_n(B)$ by Corollary 2.3. Thus $M = N^*N$ for some $N = [b_{ij}] \in M_n(B)$, that is, $P(a_i^*a_j) = \sum_k b_{ki}^* b_{kj}$ ($1 \le i, j \le n$). Since ψ is positive definite, it follows that

$$\begin{split} \sum_{i,j} \left\langle \alpha_{t_{i}^{-1}}(a_{i}^{*}a_{j}), \phi(t_{i}^{-1}t_{j}) \right\rangle &= \sum_{i,j} \left\langle P(\alpha_{t_{i}^{-1}}(a_{i}^{*}a_{j})), \psi(t_{i}^{-1}t_{j}) \right\rangle \\ &= \sum_{i,j} \left\langle \alpha_{t_{i}^{-1}}(P(a_{i}^{*}a_{j})), \psi(t_{i}^{-1}t_{j}) \right\rangle \\ &= \sum_{i,j} \left\langle \alpha_{t_{i}^{-1}}\left(\sum_{k} b_{ki}^{*}b_{kj}\right), \psi(t_{i}^{-1}t_{j}) \right\rangle \\ &= \sum_{k} \sum_{i,j} \left\langle \alpha_{t_{i}^{-1}}(b_{ki}^{*}b_{kj}), \psi(t_{i}^{-1}t_{j}) \right\rangle \geqslant 0. \end{split}$$

Hence ϕ is positive definite. Let Φ be a positive linear form on $C^*(G, A, \alpha)$ corresponding to ϕ by Pedersen [11, 7.6.7, 7.6.8]. Then $\|\Phi\| = \|\phi(e)\| = \|\psi(e)\| = \|\Psi\| \le 1$, where e is the identity of G (cf. Pedersen [11, 7.6.7]), and

$$\Phi(y^*y) = \int \langle (y^*y)(t), \phi(t) \rangle dt = \int \langle (y^*y)(t), \psi(t) \rangle dt = \Psi(y^*y).$$

This implies that $||y||_B \le ||y||_A$. Therefore, $||y||_B = ||y||_A$ for any $y \in L^1(G, B)$, and $C^*(G, B, \alpha)$ is a C^* -subalgebra of $C^*(G, A, \alpha)$. (In the sequel we denote by ||x|| the norm of $x \in L^1(G, A)$ in $C^*(G, A, \alpha)$.)

THEOREM 3.2. Let (A, G, α) , B and P be as in Proposition 3.1. Then there exists a conditional expectation of $C^*(G, A, \alpha)$ onto $C^*(G, B, \alpha)$.

PROOF. Define $Q: L^1(G, A) \to L^1(G, B)$ by (Q(x))(t) = P(x(t)) $(x \in L^1(G, A), t \in G)$. Then Q is a linear map and Q(y) = y for every $y \in L^1(G, B)$. Take a positive linear form Ψ on $L^1(G, B)$ with $\|\Psi\| \le 1$. As in the proof of Proposition 3.1, to this Ψ there correspond a norm continuous positive definite function $\psi: G \to B^*$, a norm continuous positive definite function $\phi: G \to A^*$ and a positive linear form Φ on $C^*(G, A, \alpha)$ with $\|\Phi\| \le 1$. Let K(G, A) be the set of all A-valued

continuous functions on G with compact support. Then for $x \in K(G, A)$,

$$\Psi(Q(x)^*Q(x)) = \int \langle (Q(x)^*Q(x))(t), \psi(t) \rangle dt$$

$$= \int \int \Delta(s^{-1}) \langle \alpha_s(P(x(s^{-1})^*)P(x(s^{-1}t))), \psi(t) \rangle ds dt$$

$$= \int \int \langle \alpha_{s^{-1}}(P(x(s)^*)P(x(t))), \psi(s^{-1}t) \rangle ds dt$$

and

$$\Phi(x^*x) = \int \langle (x^*x)(t), \phi(t) \rangle dt$$

$$= \int \int \Delta(s^{-1}) \langle \alpha_s(P(x(s^{-1})^*x(s^{-1}t))), \psi(t) \rangle ds dt$$

$$= \int \int \langle \alpha_{s^{-1}}(P(x(s)^*x(t))), \psi(s^{-1}t) \rangle ds dt.$$

The function

$$(s, t) \rightarrow \langle \alpha_{s^{-1}}(P(x(s)^*)P(x(t))), \psi(s^{-1}t) \rangle$$

on $G \times G$ is continuous and of compact support S_1 . Similarly the function

$$(s, t) \rightarrow \langle \alpha_{s^{-1}}(P(x(s)^*)x(t)), \psi(s^{-1}t) \rangle$$

on $G \times G$ is continuous and of compact support S_2 . Then S_1 and S_2 are contained in a set $K \times K$ for some compact subset K of G. The measure on K induced by the left Haar measure dt is a finite measure, hence it is the weak*-limit of positive measures m_l of finite support. Then $m_l = \sum_i c_i \delta_{l_i}$ for some positive numbers c_1, \ldots, c_n and $t_1, \ldots, t_n \in G$, where δ_l is the point measure at $l \in G$. We have

$$\int \int \left\langle \alpha_{s^{-1}}(P(x(s)^*)P(x(t))), \psi(s^{-1}t) \right\rangle dm_l(s) dm_l(t)$$

$$= \sum_{i,j} \left\langle \alpha_{t_i^{-1}}(P(x(t_i)^*)P(x(t_j))), \psi(t_i^{-1}t_j) \right\rangle c_i c_j$$

and

$$\int \int \left\langle \alpha_{s^{-1}}(P(x(s)^*x(t))), \psi(s^{-1}t) \right\rangle dm_l(s) dm_l(t)$$

$$= \sum_{i,j} \left\langle \alpha_{t_i^{-1}}(P(x(t_i)^*x(t_j))), \psi(t_i^{-1}t_j) \right\rangle c_i c_j.$$

By Proposition 2.2, $M = [c_i c_j P(x(t_i)^* x(t_j)) - c_i c_j P(x(t_i)^*) P(x(t_j))]$ is positive in $M_n(B)$. Thus, $M = N^* N$ for some $N = [b_{ij}] \in M_n(B)$. It follows that

$$\begin{split} \sum_{i,j} \left\langle \alpha_{t_{i}^{-1}} \left(P(x(t_{i})^{*}x(t_{j})) \right), \psi(t_{i}^{-1}t_{j}) \right\rangle c_{i}c_{j} &- \sum_{i,j} \left\langle \alpha_{t_{i}^{-1}} \left(P(x(t_{i})^{*}) P(x(t_{j})) \right), \psi(t_{i}^{-1}t_{j}) \right\rangle c_{i}c_{j} \\ &= \sum_{i,j} \left\langle \alpha_{t_{i}^{-1}} \left(\sum_{k} b_{ki}^{*}b_{kj} \right), \psi(t_{i}^{-1}t_{j}) \right\rangle &= \sum_{k} \sum_{i,j} \left\langle \alpha_{t_{i}^{-1}} (b_{ki}^{*}b_{kj}), \psi(t_{i}^{-1}t_{j}) \right\rangle > 0. \end{split}$$

Therefore

$$\int \int \left\langle \alpha_{s^{-1}}(P(x(s)^*)P(x(t))), \psi(s^{-1}t) \right\rangle dm_l(s) dm_l(t)$$

$$\leq \int \int \left\langle \alpha_{s^{-1}}(P(x(s)^*x(t))), \psi(s^{-1}t) \right\rangle dm_l(s) dm_l(t)$$

and, in the limit,

$$\int \int \left\langle \alpha_{s^{-1}}(P(x(s)^*)P(x(t))), \psi(s^{-1}t) \right\rangle ds dt$$

$$\leq \int \int \left\langle \alpha_{s^{-1}}(P(x(s)^*x(t))), \psi(s^{-1}t) \right\rangle ds dt.$$

We have $\Psi(Q(x)^*Q(x)) \leq \Phi(x^*x)$. Since K(G, A) is dense in $L^1(G, A)$, the above inequality holds for any $x \in L^1(G, A)$. This implies that $\|Q(x)\| \leq \|x\|$ for every $x \in L^1(G, A)$, and Q extends to a conditional expectation of $C^*(G, A, \alpha)$ onto $C^*(G, B, \alpha)$.

Let ϕ be a state of A. If $\langle \alpha_t(a), \phi \rangle = \langle a, \phi \rangle$ for any $a \in A, t \in G$, then ϕ is said to be an α -invariant state. Let CB(G) be the Banach algebra of all complex-valued bounded continuous functions on G with supremum norm. For each state ϕ of A and $a \in A$, define $\phi_a \in CB(G)$ by $(\phi_a)(t) = \langle \alpha_t(a), \phi \rangle$. If A is unital and G is amenable, then for any (left and right) invariant mean m (cf. Greenleaf [7, p. 29], Pedersen [11, 7.3.3]), the state ϕ_m of A defined by $\langle a, \phi_m \rangle = m(\phi_a)$ is α -invariant (cf. Emch [6, p. 173]). Notice that, if G is amenable, the reduced C^* -crossed product $C_r^*(G, A, \alpha)$ (Zeller-Meier [20, Définition 4.6 (for G discrete)], Takai [15]; cf. Pedersen [11, 7.7.4]) is equal to the C^* -crossed product $C^*(G, A, \alpha)$ for any C^* -dynamical system (A, G, α) (Zeller-Meier [20, Théorème 5.1 (for G discrete)], Takai [15, Proposition 2.2]; cf. Pedersen [11, 7.7.7]). It is known that G is amenable if and only if $C^*(G) = C_r^*(G)$ (cf. Dixmier [4, §18.3], Greenleaf [7, §3.5], Pedersen [11, §7.3]).

COROLLARY 3.3. Let (A, G, α) be a C^* -dynamical system. Suppose that A is unital and has an α -invariant state. Then there exists a conditional expectation of $C^*(G, A, \alpha)$ onto its C^* -subalgebra $C^*(G)$.

PROOF. Let 1 be the identity of A and identify C with C1. Let ϕ be an α -invariant state of A. Define $P: A \to C1$ by $P(a) = \phi(a)1$ ($a \in A$). Then P is a conditional expectation and, since ϕ is α -invariant, $P\alpha_t = \alpha_t P$ for every $t \in G$. By Theorem 3.2 there exists a conditional expectation of $C^*(G, A, \alpha)$ onto the C^* -subalgebra $C^*(G)$ of $C^*(G, A, \alpha)$.

COROLLARY 3.4. Let (A, G, α) be a C^* -dynamical system with A unital. If G is amenable, then there exists a conditional expectation of $C^*(G, A, \alpha)$ onto $C^*(G)$.

Now we consider the case where G is abelian. Denote by \hat{G} the dual group of G. For each $\sigma \in \hat{G}$, define $\hat{\alpha}_{\sigma} : L^{1}(G, A) \to L^{1}(G, A)$ by

$$(\hat{\alpha}_{\sigma}(x))(t) = \overline{(t,\sigma)} x(t) \qquad (x \in L^{1}(G,A), t \in G),$$

where (t, σ) is the value of the character σ at t. Then $\hat{\alpha}_{\sigma}$ can be extended to a *-automorphism of $C^*(G, A, \alpha)$ and, denoting it by the same symbol $\hat{\alpha}_{\sigma}$, $\hat{\alpha}$: $G \to \operatorname{Aut}(C^*(G, A, \alpha))$ is shown to be a strongly continuous homomorphism (Takai [15, pp. 30-31]; cf. Pedersen [11, 7.8.3]). $(C^*(G, A, \alpha), \hat{G}, \hat{\alpha})$ is called the dual C^* -dynamical system of (A, G, α) .

COROLLARY 3.5. Let (A, G, α) be a C^* -dynamical system with A unital and G abelian. Then there exists a conditional expectation of $C^*(\hat{G}, C^*(G, A, \alpha), \hat{\alpha})$ onto $C^*(\hat{G}, C^*(G), \hat{\alpha})$.

PROOF. By Corollary 3.4 there exists a conditional expectation P of $C^*(G, A, \alpha)$ onto $C^*(G)$. In view of the construction of P, it is easy to see that $\hat{\alpha}_{\sigma}P = P\hat{\alpha}_{\sigma}$ for all $\sigma \in \hat{G}$. Hence, by Theorem 3.2 there exists a conditional expectation of $C^*(\hat{G}, C^*(G, A, \alpha), \hat{\alpha})$ onto $C^*(\hat{G}, C^*(G), \hat{\alpha})$.

4. Projections in C^* -crossed products with discrete groups. We now treat the case where G is discrete. The following theorem is essentially due to Zeller-Meier [20].

THEOREM 4.1. Let (A, G, α) be a C^* -dynamical system with G discrete. Then

- (i) there exists a conditional expectation of $C_r^*(G, A, \alpha)$ onto A, and
- (ii) there exists a conditional expectation of $C^*(G, A, \alpha)$ onto A.

PROOF. (i) Since G is discrete, the Haar measure dt on G is a counting measure, that is, for any finite subset F of G, the measure of F is the number of elements in F. By the correspondence $a \to \delta_e a$ $(a \in A)$, A may be considered as a C^* -subalgebra of $C^*_r(G,A,\alpha)$ [20, p. 171], where δ_e is the characteristic function of $\{e\}$, that is, $\delta_e(t)=1$ if t=e, or 0 if $t\neq e$. Define P: $L^1(G,A)\to A$ by P(x)=x(e) $(x\in L^1(G,A))$. Then P can be extended to a conditional expectation of $C^*_r(G,A,\alpha)$ onto A. In fact, for any state ϕ of A, let $(\pi_\phi,H_\phi,\xi_\phi)$ be the GNS representation of A induced by ϕ and $\eta_\phi=\delta_e\xi_\phi\in L^2(G,H_\phi)$, where $L^2(G,H_\phi)$ is the Hilbert space of all H_ϕ -valued functions η on G such that $\int \|\eta(t)\|^2 dt < \infty$. Denote $\Pi_\phi=\operatorname{Ind}\pi_\phi$ [20, Définition 4.1]. Then $(\Pi_\phi,L^2(G,H_\phi),\eta_\phi)$ is a cyclic *-representation of $L^1(G,A)$, and for each $x\in L^1(G,A)$, $(\Pi_\phi(x)\eta_\phi,\eta_\phi)=\phi(x(e))$ [20, Proposition 4.2(ii)]. It follows that

$$\left(\Pi_{\phi}(x^*x)\eta_{\phi},\eta_{\phi}\right)=\phi((x^*x)(e))\geqslant\phi(x(e)^*x(e))=\phi(P(x)^*P(x)).$$

This implies that $||P(x)|| \le ||x||_r$ (the norm of x in $C_r^*(G, A, \alpha)$) and P extends to a conditional expectation of $C_r^*(G, A, \alpha)$ onto A.

(ii) By the correspondence $a \to \delta_e a$ $(a \in A)$, A is also a C^* -subalgebra of $C^*(G, A, \alpha)$ [20, p. 146]. Since $||x||_r \le ||x||$ for any $x \in L^1(G, A)$, P in the proof of (i) can be extended to a conditional expectation of $C^*(G, A, \alpha)$ onto A.

ACKNOWLEDGEMENTS. I wish to express my gratitude to Dr. M. Ozawa for inspiring discussions in preparing this paper. I also wish to express my sincere appreciation to Professor H. Umegaki for his advice and encouragement.

REFERENCES

- 1. C. Anantharaman-Delaroche, Action moyennable d'un groupe localement compact sur une algèbre de von Neumann, Math. Scand. 45 (1979), 289-304.
- 2. _____, Sur la moyennabilité des actions libres d'un groupe localement compact dans une algèbre de von Neumann, C. R. Acad. Sci. Paris Sér. A-B 289 (1979), 605-607.
- 3. O. Bratteli and D. W. Robinson, Operator algebras and quantum statistical mechanics. I, Springer, New York, 1979.
 - 4. J. Dixmier, C*-algebras, English transl., North-Holland, Amsterdam, 1977.
- 5. S. Doplicher, D. Kastler and D. W. Robinson, Covariance algebras in field theory and statistical mechanics, Comm. Math. Phys. 3 (1966), 1-28.
- 6. G. G. Emch, Algebraic methods in statistical mechanics and quantum field theory, Wiley, New York, 1972.
- 7. F. P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Math. Studies, No. 16, Van Nostrand Reinhold, New York and London, 1969.
- 8. S. Itoh, A note on dilations in modules over C*-algebras, J. London Math. Soc. (2) 22 (1980), 117-126.
- 9. M. Nakamura, M. Takesaki and H. Umegaki, A remark on the expectations of operator algebras, Kōdai Math. Sem. Rep. 12 (1960), 82-90.
- 10. W. L. Paschke, Inner product modules over B*-algebras, Trans. Amer. Math. Soc. 182 (1973), 443-468.
 - 11. G. K. Pedersen, C*-algebras and their automorphism groups, Academic Press, London, 1979.
 - 12. M. A. Rieffel, Induced representations of C*-algebras, Adv. in Math. 13 (1974), 176-257.
 - 13. S. Sakai, C*-algebras and W*-algebras, Springer, Berlin, 1971.
- 14. E. Størmer, *Positive linear maps of C*-algebras*, Foundations of Quantum Mechanics and Ordered Linear Spaces (A. Hartkämper and H. Neumann, editors), Lecture Notes in Physics, vol. 29, Springer-Verlag, Berlin, 1974, pp. 85–106.
 - 15. H. Takai, On a duality for crossed products of C*-algebras, J. Funct. Anal. 19 (1975), 25-39.
- 16. M. Takesaki, Covariant representations of C*-algebras and their locally compact automorphism groups, Acta Math. 119 (1967), 273-303.
 - 17. _____, Theory of operator algebras. I, Springer, New York, 1979.
 - 18. J. Tomiyama, On the projection of norm one in W*-algebras, Proc. Japan Acad. 33 (1957), 608-612.
 - 19. H. Umegaki, Conditional expectation in an operator algebra, Tôhoku Math. J. 6 (1954), 177-181.
- 20. G. Zeller-Meier, Produits croisés d'une C*-algèbre par un groupe d'automorphismes, J. Math. Pures Appl. 47 (1968), 101-239.

DEPARTMENT OF MATHEMATICS, KYUSHU INSTITUTE OF TECHNOLOGY, TOBATA, KITAKYUSHU 804, JAPAN